学习经历:
2006.09-2010.06 南方医科大学,生物医学工程,学士
2014.04-2015.04 美国北卡罗来纳大学教堂山分校,生物统计学系,访问学生,导师:冯前进教授和Prof. Hongtu Zhu
2010.09-2015.06 南方医科大学,生物医学工程,博士,导师:冯前进教授
工作经历:
2015.09-2024.07 南方医科大学生物医学工程学院医学信息所,副教授
2024.08至今 南方医科大学生物医学工程学院医学信息所,教授,副所长
主要获奖情况(人才类奖项)
广东省青年珠江学者
在研科研项目:
1. 国家自然科学基金面上项目,2026.01-2029.12,主持
2. 国家自然科学基金面上项目,2023.01-2026.12,主持
3. 广东省自然科学基金面上项目,2023.02-2026.12,主持
医学图像处理与人工智能
1. 高维影像与基因数据之间的相关性分析:找出与疾病相关的生物标记物,为疾病的精准诊疗提供分析和决策支持工具。该方法通过研究快速有效处理高维影像与基因数据的方法,并构建医学影像与基因数据的相关性模型,从而发掘与疾病相关的影像、基因生物标记物。该方法是分析神经疾病基因作用的有效方法,将重点研究神经退行性疾病的多模态影像特征与基因数据的关联,为疾病的预测和个性化治疗提供关键的影像和基因标记物,为有效的个性化治疗提供基础。针对该方向的工作,本人已有8篇一区论文(Medical Image Analysis3篇,IEEE Transactions on Medical Imaging1篇,Molecular Psychiatry1篇,Pattern Recognition1篇,Expert Systems with Applications1篇,Neuroimage1篇)被录用发表。
2. 基于fNIRS的心理学研究及认知神经科学研究:通过fNIRS测量人体在自然情境中大脑皮层血流状况,主要利用多个波长的近红外光与脑组织中生色团物质之间的吸收和散射关系,考察特定状态下脑组织中氧合血红蛋白、脱氧血红蛋白以及总血红蛋白的浓度变化,反映大脑的状态与加工的过程。针对该方向的工作,本人已在一区杂志IEEE Transactions on Neural Systems & Rehabilitation Engineering和International Journal of Clinical and Health Psychology上发表相关论文。
3. 脑胶质瘤术后高复发风险区域的预测研究:胶质瘤术后高复发风险区域的精确预测对胶质瘤患者治疗计划的制定及预后评估具有重大价值。主要针对脑胶质瘤患者术前和术后多模态MRI图像进行研究,结合胶质瘤的浸润生长特性,通过无监督深度学习方法提取蕴含在大量临床影像数据的信息和知识作为图像特征,构建图像特征与肿瘤复发区域之间的映射模型,实现胶质瘤高复发风险区域的预测,并在对某个患者的术后图像进行肿瘤复发区域预测时,创新性地在模型中引入该患者术前胶质瘤边缘区域的个体信息,对模型进行迭代更新,建立有效实用的个性化胶质瘤高复发风险区域预测模型和技术,为临床胶质瘤患者的个性化治疗提供依据,辅助指导临床决策。针对该方向的工作,本人已有3篇一区和2篇二区论文(Medical Image Analysis1篇,IEEE Journal of Biomedical and Health Informatics1篇,Neuroimage1篇,Computer Methods and Programs in Biomedicine1篇,IEEE Transactions on Biomedical Engineering1篇)被录用发表。
4. 肝细胞癌大血管侵犯风险预测研究:肝细胞癌通常会侵犯门静脉主干及其分支、肝静脉及下腔静脉形成癌栓,是复发和生存率低的主要危险因素,免疫治疗、靶向药物治疗和放射治疗等多种治疗方法用于治疗发生大血管侵犯的肝细胞癌患者,且经治疗后其中位生存期得到延长,然而上述治疗方法的高效性和安全性依赖于早诊早治。基于此,若能精准预测肝细胞癌患者发生大血管侵犯的风险,可为后续制定随访计划以及治疗方案提供辅助依据。针对该方向的工作,本人已有4篇一区和2篇二区论文(Information fusion1篇,Engineering Applications of Artificial Intelligence1篇,IEEE Transactions on Medical Imaging1篇,EClinicalMedicine(柳叶刀子刊)1篇,Hepatology International1篇,Liver International1篇)被录用发表。
[1] Boya Wu#, Jianyun Cao#, Wei Xiong#, Yanchun Lv, Guohua Zhao, Xiaoyue Ma, Ying Zhang, Jiawei Zhang, Junguo Bu, Tao Xie*, Qianjin Feng*, and Meiyan Huang*. Contrastive learning and prior knowledge-induced feature extraction network for prediction of high-risk recurrence areas in Gliomas, Medical Image Analysis, 2025, 106, 103740. (IF: 11.8)
[2] Meiyan Huang#,*, Xiaoling Zhang#, Xiumei Chen, Xinyue Zhang, Bingxin Zhao, Chao Huang, Ting Tian, Chuang Li, Qianjin Feng*, and Wenliang Pan*. A phenome-wide association and Mendelian randomization study for suicide attempt within UK Biobank, Molecular Psychiatry, 2025. (IF: 10.1)
[3] Tao Wang, Xiumei Chen, Jiawei Zhang, Qianjin Feng*, and Meiyan Huang*. Deep multimodality-disentangled association analysis network for imaging genetics in neurodegenerative diseases, Medical Image Analysis, 2023, 88, 102842. (IF: 10.9)
[4] Haoran Lai#, Sirui Fu#, Jie Zhang, Jianyun Cao, Qianjin Feng*, Ligong, Lu*, and Meiyan Huang*. Prior knowledge-aware fusion network for prediction of macrovascular invasion in hepatocellular carcinoma, IEEE Transactions on Medical Imaging, 2022, 41(10), 2644-2657. (IF: 10.6)
[5] Xiumei Chen, Tao Wang, Haoran Lai, Xiaoling Zhang, Qianjin Feng*, and Meiyan Huang*. Structure-constrained combination-based nonlinear association analysis between incomplete multimodal imaging and genetic data for biomarker detection of neurodegenerative diseases, Medical Image Analysis, 2022, 78, 102419. (IF: 10.9)
[6] Sirui Fu#, Haoran Lai#, Qiyang Li#, Yao Liu, Jiawei Zhang, Jianwen Huang, Xiumei Chen, Chongyang Duan, Xiaoqun Li, Tao Wang, Xiaofeng He, Jianfeng Yan, Ligong Lu*, and Meiyan Huang*. Multi-task deep learning network to predict future macrovascular invasion in hepatocellular carcinoma, EClinicalMedicine, 2021, 42, 101201. (IF: 17.033)
[7] Meiyan Huang*, Xiumei Chen, Yuwei Yu, Haoran Lai, and Qianjin Feng*. Imaging genetics study based on a temporal group sparse regression and additive model for biomarker detection of Alzheimer’s disease, IEEE Transactions on Medical Imaging, 2021, 40(5), 1461-1473. (IF: 11.037)
[8] Meiyan Huang*, Haoran Lai, Yuwei Yu, Xiumei Chen, Tao Wang, and Qianjin Feng*. Deep-gated recurrent unit and diet network-based genome-wide association analysis for detecting the biomarkers of Alzheimer’s disease, Medical Image Analysis, 2021, 73, 102189. (IF: 13.828)
[9] Junzhang Huang, Xiongfeng Zhu, Ziyang Chen, Guoye Lin, Meiyan Huang*, and Qianjin Feng*. Pathological priors inspired network for vertebral osteophytes recognition, IEEE Transactions on Medical Imaging, 2024, 43(7), 2522-2536. (IF: 10.6)
[10] Shuoling Zhou#, Sirui Fu#, Wenbo Wang#, Shuguang Liu#, Lei Yang, Mingyue Cai*, Qianjin Feng*, and Meiyan Huang*. Multi-tissue deep fusion network for prediction of pulmonary metastasis in hepatocellular carcinoma, Information fusion, 2026, 127, 103748. (IF: 15.5)